Popularity
4.1
Growing
Activity
0.0
Declining
108
14
5

Monthly Downloads: 16
Programming language: Rust
License: MIT License
Tags: Data Processing    

utah alternatives and similar packages

Based on the "Data processing" category

Do you think we are missing an alternative of utah or a related project?

Add another 'Data processing' Package

README

Utah

Build Status

Utah is a Rust crate backed by ndarray for type-conscious, tabular data manipulation with an expressive, functional interface.

Note: This crate works on stable. However, if you are working with dataframes with f64 data, use nightly, because you will get the performance benefits of specialization.

API currently in development and subject to change.

For an in-depth introduction to the mechanics of this crate, as well as future goals, read this blog post.

Install

Add the following to your Cargo.toml:

utah="0.1.2"

And add the following to your lib.rs or main.rs

#[macro_use]
extern crate utah

Documentation

Check out docs.rs for latest documentation.

Examples

Create dataframes on the fly

use utah::prelude::*;
let df = DataFrame<f64> = dataframe!(
    {
        "a" =>  col!([2., 3., 2.]),
        "b" =>  col!([2., NAN, 2.])
    });

let a = arr2(&[[2.0, 7.0], [3.0, 4.0]]);
let df : Result<DataFrame<f64>> = DataFrame::new(a).index(&["1", "2"]);

Transform the dataframe

use utah::prelude::*;
let df: DataFrame<f64> = DataFrame::read_csv("test.csv").unwrap();       
let res : DataFrame<f64> = df.remove(&["a", "c"], UtahAxis::Column).as_df()?;

Chain operations

use utah::prelude::*;
let df: DataFrame<f64> = DataFrame::read_csv("test.csv").unwrap();       
let res : DataFrame<f64> = df.df_iter(UtahAxis::Row)
                                     .remove(&["1"])
                                     .select(&["2"])
                                     .append("8", new_data.view())
                                     .sumdf()
                                     .as_df()?;

Support mixed types

use utah::prelude::*;
let a = DataFrame<InnerType> = dataframe!(
    {
        "name" =>  col!([InnerType::Str("Alice"),
                            InnerType::Str("Bob"),
                            InnerType::Str("Jane")]),
        "data" =>  col!([InnerType::Float(2.0),
                            InnerType::Empty(),
                            InnerType::Float(3.0)])
    });
let b: DataFrame<InnerType> = DataFrame::read_csv("test.csv").unwrap();
let res : DataFrame<InnerType> = a.concat(&b).as_df()?;